Remaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain
نویسندگان
چکیده
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning. Keywords—Elliptical Basis Function Network, Markov Chain, Missing Covariates, Remaining Useful Life
منابع مشابه
Prediction of Land Use Change and its Hydrological Effects Using Markov Chain Model and SWAT Model
Access to current and future water resources is one of the concerned problems for managers and policymakers around the world. Because of the communication between water resources and land use, these two topics had come together in different researches. Scenarios designed in regional land planning provide the basis for analyzing the existing opportunities and making the right decisions for manag...
متن کاملA Bayesian Prediction using the Elliptical and the Skew Gaussian Processes
A Bayesian Prediction using the Elliptical Processes (EP) and the Skew Gaussian Processes (SGP) is proposed, motivated by a Bayesian model for heavy, light tailed or skewed real data. We define weak third order stationary for the Skew Gaussian Processes. Sometimes the family of distributions have dimensional coherency (consistency) property which is important for prediction. We use a Markov Cha...
متن کاملPerformance evaluation of chain saw machines for dimensional stones using feasibility of neural network models
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملDevelopment of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components
We consider a three-state continuous-time semi-Markov process with Weibull-distributed transition times to model the degradation mechanism of an industrial equipment. To build this model, an original combination of techniques is proposed for building a semi-Markov degradation model based on expert knowledge and few field data within the Bayesian statistical framework. The issues addressed are: ...
متن کامل